I wrote a Scheme program to compute the Groebner basis.
Used Gauche, a scheme implementation.
(use srfi-1)
(use srfi-43)
(use util.combinations)
(define (poly . l)
(apply hash-table (cons 'equal? (remove (lambda (x) (zero? (cdr x))) l))))
(define (order-lex a b)
(let loop ((a a)
(b b))
(cond
((null? a) #f)
((null? b) #t)
((> (car a) (car b)) #t)
((< (car a) (car b)) #f)
(else (loop (cdr a) (cdr b))))))
(define (order-grlex a b)
(let ((sum-a (fold + 0 a))
(sum-b (fold + 0 b)))
(cond
((> sum-a sum-b) #t)
((< sum-a sum-b) #f)
((= sum-a sum-b) (order-lex a b)))))
(define (order-grevlex a b)
(let ((sum-a (fold + 0 a))
(sum-b (fold + 0 b)))
(cond
((> sum-a sum-b) #t)
((< sum-a sum-b) #f)
((= sum-a sum-b) (order-lex (reverse b) (reverse a))))))
(define (multideg order f)
(fold (lambda (a b) (if (order a b) a b)) '() (hash-table-keys f)))
(define (LC order f)
(hash-table-get f (multideg order f)))
(define (LM order f)
(cons (multideg order f) 1))
(define (LT order f)
(cons (multideg order f) (LC order f)))
(define (divide-term a b)
(cons (map - (car a) (car b)) (/ (cdr a) (cdr b))))
(define (zero-poly? f)
(every zero? (hash-table-values f)))
(define (+poly a b)
(define ht (poly))
(hash-table-for-each a (lambda (akey avalue)
(hash-table-put! ht akey avalue)))
(hash-table-for-each b (lambda (bkey bvalue)
(hash-table-update! ht bkey (cut + <> bvalue) 0)))
(hash-table-for-each ht (lambda (key value)
(when (zero? value) (hash-table-delete! ht key))))
ht)
(define (-poly a b)
(define ht (poly))
(hash-table-for-each a (lambda (akey avalue)
(hash-table-put! ht akey avalue)))
(hash-table-for-each b (lambda (bkey bvalue)
(hash-table-update! ht bkey (cut - <> bvalue) 0)))
(hash-table-for-each ht (lambda (key value)
(when (zero? value) (hash-table-delete! ht key))))
ht)
(define (*poly a b)
(define ht (poly))
(hash-table-for-each a (lambda (akey avalue)
(hash-table-for-each b (lambda (bkey bvalue)
(hash-table-update! ht (map + akey bkey) (cut + <> (* avalue bvalue)) 0)))))
(hash-table-for-each ht (lambda (key value)
(when (zero? value) (hash-table-delete! ht key))))
ht)
(define (quotient&remainder order f g-list)
(define quotients (make-vector (length g-list) (poly)))
(let loop ((f f)
(intermediate-divident (poly)))
(if (zero-poly? f)
(values (vector->list quotients) intermediate-divident)
(let ((ind (list-index (lambda (x)
(every >= (multideg order f) (multideg order x)))
g-list)))
(if ind
(let* ((g (list-ref g-list ind))
(p (poly (divide-term (LT order f) (LT order g)))))
(vector-set! quotients ind (+poly p (vector-ref quotients ind)))
(loop (-poly f (*poly p g)) intermediate-divident))
(loop (-poly f (poly (LT order f))) (+poly (poly (LT order f)) intermediate-divident)))))))
(define (quotient-poly order f g-list)
(receive (q r) (quotient&remainder order f g-list)
q))
(define (remainder-poly order f g-list)
(receive (q r) (quotient&remainder order f g-list)
r))
(define (S-poly order f g)
(define term-r (cons (map max (multideg order f) (multideg order g)) 1))
(-poly (*poly (poly (divide-term term-r (LT order f))) f)
(*poly (poly (divide-term term-r (LT order g))) g)))
(define (groebner order f-list)
(let ((l (remove zero-poly? (map (lambda (x) (remainder-poly order (S-poly order (car x) (cadr x)) f-list))
(combinations f-list 2)))))
(if (null? l)
f-list
(groebner order (append f-list l)))))
And now, let's test them.
Test.
(define f (poly '((1 2 1) . 4) '((0 0 2) . 4) '((3 0 0) . -5) '((2 0 2) . 7)))
(multideg order-lex f) == (3 0 0)
(LC order-lex f) == -5
(LM order-lex f) == ((3 0 0) . 1)
(LT order-lex f) == ((3 0 0) . -5)
Test.
(S-poly order-grlex (poly '((3 2) . 1)
'((2 3) . -1)
'((1 0) . 1))
(poly '((4 1) . 3)
'((0 2) . 1)))
== '(((3 3) . -1) ((2 0) . 1) ((0 3) . -1/3))
Test.
(groebner order-grlex
(list (poly '((3 0) . 1)
'((1 1) . -2))
(poly '((2 1) . 1)
'((0 2) . -2)
'((1 0) . 1))))
== '((((3 0) . 1) ((1 1) . -2))
(((2 1) . 1) ((0 2) . -2) ((1 0) . 1))
(((2 0) . -1))
(((1 1) . -2))
(((0 2) . -2) ((1 0) . 1)))
No comments:
Post a Comment